2D Materials

Overview| Current projects| People| Resources| Publications

LATEST NEWS

PhD projects: Several PhD projects are available in the group. See the description at FindAPhD. Send inquiries through FindAPhD or directly to a.tartakovskii@sheffield.ac.uk.

November 2020: Our first paper on atomically thin magnetic materials has been published in Nature Communications! Its title is ‘Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures’. Congratulations to Tom and Dan! This is collaboration between Sheffield, Manchester, Exeter (including their Extremag facility, where we were the first users!), International Iberian Nanotechnology Laboratory, and Tsukuba. See a copy of the manuscript here.

November 2020: Our new paper on ‘Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition’ has been published in IoP 2D Materials. Congratulations to Dan, Armando, Tom and Toby! This is collaboration between Sheffield, UNIST and Oxford. Important internal collaboration with the organic optoelectronic devices group of Prof David Lidezey in Sheffield too. See a copy of the manuscript here.

October 2020: A Tartakovskii was awarded a new £420k EPSRC grant to work on Quantum Materials by Twistronicse. This is part of a £1.7M joint grant with the University of Manchester led by Profs R Gorbachev, S Haigh and V Falko.

September 2020: Our new paper on ‘Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation’ has been published in ACS Nano. Congratulations to Evgeny, Oleksandr and Tillmann! This is collaboration between Sheffield and Manchester. Important collaboration with the scanning probe analysis group of Prof Jamie Hobbs in Sheffield too. See a copy of the manuscript here.

August 2020: A Tartakovskii was awarded a new £1.6M EPSRC Strategic Equipment grant for Near-Field Optical Spectroscopy Centre. This centre will make available truly non-invasive techniques relying on weak optical probes. A new research facility based on such an instrument will enable a unique suite of novel optical techniques capable of 10 nm spatial resolution, 50 to 1000 times below the optical diffraction limit. The techniques are based on the light focusing with a very sharp tip, used in atomic force microscopy (AFM). See further information on such instruments here.

August 2020: Our new paper on ‘Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors’ has been published in ACS Photonics. Congratulations to Luca, Panaiot and Armando! This is collaboration between Sheffield, Imperial, Konstanz and LMU Munich. See a copy of the manuscript here.

May 2020: Our new paper on ‘Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging’ is npj 2D Materials and Applications. Congratulations to Toby, Armando, Evgeny and Sam who contributed a lot to this technical development. This is collaboration between Sheffield and UNIST (Ulsan, Korea). See the Open Access manuscript here.

May 2020: Our new paper on ‘Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities’ is published in IoP 2D Materials. A lot of previous members contributed to this work, that was finished by Armando. Congratulations! This work is primarily result of collaboration between Sheffield and Manchester. See the Open Access manuscript here.

April 2020: We posted our four new papers on arxiv.org. Two will soon appear in press in IoP 2D Materials and npj 2D Materials and Applications.

November 2019: Our new paper on ‘Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas’ is published in Nature Communications. Congratulations to Luca and Panaiot who put a lot of effort in this work. This is collaboration between Sheffield, Imperial, Dortmund and LMU Munich. See the Open Access manuscript here.

Luca just after his viva with the cryogenic micro-PL system he assembled from scratch during his PhD.

October 2019: Congratulations to Luca Sortino for successful defence of his PhD thesis!

October 2019: A new PhD student Oscar Hutchings has just joined our group.

September 2019: Kick-off meeting in Dortmund for our EPSRC Centre-to-Centre project with Prof Manfred Bayer’s group.

During the visit of one of the many optical spectroscopy laboratories in Dortmund. Left to right: Sasha Tartakovskii, Dima Krizhanovskii, Manfred Bayer, Mark Fox

September 2019: Congratulations to Tom Lyons for successful defence of his PhD thesis. Well done!

Tom just before his viva on 24th September 2019.

August 2019: Evgeny Alexeev in collaboration with Ossila Ltd has developed a guide for ‘Viscoelastic Transfer of 2D Material Using PDMS’. See the accompanying video and the step-by-step description on Ossila’s web-site.

July 2019: We have been awarded an EPSRC Centre-to-Centre grant of £1.4 million to initiate collaborative research into light-matter interactions in quantum nano-materials with the Technical University of Dortmund with the centre led by Professor Manfred Bayer. See University’s press-release here. Postdoc position openings will follow soon, including a position to work on 2D materials.

July 2019: Congratulations to Alessandro Catanzaro for successful defence of his PhD thesis. Well done!

Alessandro after the successful defence of his PhD thesis 25 July 2019.

May 2019: Our new paper on ‘The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2’ is published in Nature Communications. This is collaboration between Sheffield, Konstanz, Manchester, Exeter and NIMS. Congratulations to Tom Lyons who was the main drive behind this work! See the Open Access manuscript here.

March 2019: Our latest paper just appeared in Nature: access full text here. We report on how two monolayer TMDs hybridize when stacked, role of the moire pattern in the atomic registry, and importantly how all of these are controlled by the twist between the layers. The paper is on the Nature web-site. Our paper, and several other studies published last week are also accompanied with a News and Views article.

November 2018: Our new paper on ‘Valley coherent exciton-polaritons in a monolayer semiconductor’ is published in Nature Communications. This is collaboration between Sheffield, Clermont-Ferrand, Oxford and Manchester. See the Open Access manuscript here.

See more in the news archive below.

OVERVIEW

Open cavity set-up

Stefan Schwarz aligning the open cavity set-up.

The isolation of single-atomic layer graphene has led to a surge of interest in other layered crystals with strong in-plane bonds and weak, van der Waals-like, interlayer coupling. Here we research new properties of two-dimensional materials extracted from their layered bulk crystals. We published work on MoS2, MoSe2, WSe2, WS2, CrBr3, GaSe, GaTe, InSe and heterostructures made from some of these materials. In their bulk form layered materials may vary from insulators to semiconductors, from metals to superconductors, and exhibit topological insulator properties. We obtain 2D films by mechanical exfoliation from such layered crystals, often referred to as van der Waals crystals to describe the weak forces holding their atomic planes together. The properties of 2D films may differ from the bulk quite dramatically. For example, some indirect band-gap semiconductors turn to direct band-gap ones and become optically active. Our recent effort is on development of hybrid photonic devices comprising these 2D films and artificially built van der Waals heterostructures consisting of atomically thin layers of various materials.

CURRENT PROJECTS (November 2020)

Sub-wavelength all-dielectric nano-photonics

So far nano-photonics has dealt with dielectric devices relying on confining light in diffraction-limited volumes. Beating the diffraction limit by confining light on sub-wavelength scales has been only possible with plasmonic structures made of nano-structured metal, which unavoidably suffer from large optical losses. Recently, it has been shown that high-refractive-index dielectric nano-antennas can provide confined optical modes with sub-wavelength mode volumes. In contrast to plasmonic devices, such structures show negligible non-radiative losses. Our research group has shown that by coupling such antennas to atomically thin 2D semiconductors – transition metal dichalcogenides (TMDs), strong fluorescence enhancements in the latter can be observed ( see our paper in Nature Communications). In this project we are expanding the nano-photonics ‘tool-box’ by studying unexplored materials systems and realising innovative approaches for a new generation of dielectric nano-antennas and their coupling to various fluorescent materials.

Optical manifestations of the quantum physics of moiré superlattices in van der Waals heterostructures

Atomically-thin layers of two-dimensional materials can be assembled in vertical stacks (called ‘heterostructures’), which are held together by relatively weak van der Waals forces, allowing for coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation, or ‘twist’. The twist is a new degree of freedom recently discovered in 2D materials and now widely used in the design of 2D heterostructures. It leads to a new in-plane periodicity in the local atomic registry of the constituent crystal structures, known as a moiré superlattice. The moiré superlattice has a dramatic effect on the motion of electrons in the plane of the 2D structure. For example, when two monolayers of graphene are attached to each other with a ‘magic twist angle’ a superconductor-insulator transition is observed. Similarly, in 2D semiconductors, the twist has been shown to lead to a variety of unusual optical phenomena as we reported in our recent work in Nature. In this project, this new degree of freedom will be explored in a variety of layered materials and new phenomena and physics will be discovered.

Strong light-matter interaction in van der Waals 2D materials

Here we focus on studies of the strong light-matter interaction in 2D materials embedded in optical microcavities and coupled to various photonic structures. New states of the matter, exciton-polaritons emerge in these structures, which provide a particularly rich phenomenology in atomically thin transition metal dichalcogenides (TMDs), as we have shown in our recent papers in Nature Photonics ( https://www.nature.com/articles/nphoton.2017.125) and Nature Communications (https://www.nature.com/articles/ncomms9579, https://www.nature.com/articles/s41467-018-07249-z). Further unexplored strong-coupling phenomena, for example in high density electron gas in the extreme 2D limit will be studied in this project opening unprecedented possibilities to explore new non-linear optical phenomena and device applications.

Nano-magnetism in atomically thin 2D quantum materials and their heterostructures

In a large family of layered crystals the properties range from superconductors and metals, to semiconductors and insulators. Properties of such quantum materials in a few-atomic-layer form are strongly influenced by the quantum confinement of the electronic excitations due to the extreme crystal thinness. Surprisingly, a family of layered ferromagnetic materials exists, which preserve their ferromagnetic properties even in an atomic monolayer form. Such 2D materials will revolutionise electronics, memory devices, and will have broad applications in quantum technologies, particularly in combination with other layered semiconductors. In this PhD project you will discover novel magnetic few-atomic-layer materials, work on advancing their fabrication, and will develop methods for combining such materials with other 2D monolayer crystals such as transition metal dichalcogenides (TMDs). The goal is to fabricate and explore novel types of opto-electronic devices taking advantage of various magnetic proximity effects generated by 2D magnetic materials on the nano-scale, as was recently showed in our work in Nature Communications .

PEOPLE

The group is led by Prof Sasha Tartakovskii. In June 2020 the group consists of 3 postdocs Dr Armando Genco, Dr Thomas Lyons, Dr Luca Sortino, and 4 PhD students Daniel Gillard, Panaiot Zotev, Charalambos Louca, Oscar Hutchings. 12 PhD students graduated since 2008, now based in industry and academia in Europe (UK, Ireland, Germany), North America (Mexico) and Asia (Japan).

See Sasha Tartakovskii’s cv.

Information on other members of the group can be found on the Inorganic Semiconductors Group (or LDSD) member web-pages.

Picnic 22 July 2020

First face to face group meeting after the lockdown on 22 July 2020 on the day when the labs in Hicks building were finally open. Left to right: Charalambos, Daniel, Na, Sasha, Luca, Oscar, Panaiot, Tom, Mostafa and Armando.

Zoom group meeting

Group meeting in July 2020

Lab photo January 2019

Lab photo January 2019. Left to right: top – Evgeny, Armando, middle – Sasha, Luca, Alessandro, Panaiot, bottom – Tom, Dan, Charalambos.

Group photo January 2019

Group photo in January 2019. Left to right: Luca, Dan, Armando, Evgeny, Tom, Charalambos, Sasha, Alessandro

Historical picture, outside the lab on a sunny day: Sasha, Hakan, Osvaldo, Tillmann, Robert, Le, Stefan


Historical picture from 2014, outside the lab on a sunny day: Sasha, Hakan, Osvaldo, Tillmann, Robert, Le, Stefan

RESOURCES

Our expertise is in photonics and magneto-optics of nano-structured semiconductors. The group occupies dedicated three high-spec optical laboratories (including a state-of-the-art magneto-optics and Raman set-up), and shares access to several other state-of-the-art optics laboratories of Prof M Skolnick’s group. Sample and device fabrication is usually carried out at the National III-V Semiconductor Facility in Sheffield, where we have a dedicated set-up to produce atomically thin flakes and heterostructures. Additionally, we have installed an optical microscopy set-up in one of our labs, where more sample fabrication can be done.

New lab

Equipment has just been moved in the new lab. End of May 2016.

Scott in the new lab

Scott is working on a set-up combining a vector magnet and a scanning microcavity in our new lab. June 2016.

Microscope in the new lab

Microscope for flake search installed in the new lab. Two more high-resolution microscopes are available in the group for fabrication of 2D material structures.

PUBLICATIONS

List of publications in 2010-2021

2021

1. D. J. Gillard, A. Genco, S. Ahn, T. P. Lyons, K. Yeol Ma, A-Rang Jang, T. Severs Millard, A. A. P. Trichet, R. Jayaprakash, K. Georgiou, D. G. Lidzey, J. M. Smith, H. S. Shin, A. I. Tartakovskii, “Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition”, 2D MATERIALS 8, 011002 (2021).

2020

2. T. P. Lyons, D. Gillard, A. Molina-Sánchez, A. Misra, F. Withers, P. S. Keatley, A. Kozikov, T. Taniguchi, K. Watanabe, K. S. Novoselov, J. Fernández-Rossier, A. I. Tartakovskii, “Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures”, NATURE COMMUNICATIONS 11, 6021 (2020).

3. E. M. Alexeev, N. Mullin, P. Ares, H. Nevison-Andrews, O. Skrypka, T. Godde, A. Kozikov, L. Hague, Y. Wang, K. S. Novoselov, L. Fumagalli, J. K. Hobbs, A. I. Tartakovskii, “Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation”, ASC NANO 14, 9, 11110 (2020).

4. L. Sortino, M. Brooks, P. G. Zotev, A. Genco, J. Cambiasso, S. Mignuzzi, S. A. Maier, G. Burkard, R. Sapienza, A. I. Tartakovskii, “Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors”, ACS PHOTONICS 7, 9, 2413 (2020).

5. R. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan, F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy, M. S. Skolnick, A. I. Tartakovskii, I. A. Shelykh & D. N. Krizhanovskii, “Highly nonlinear trion-polaritons in a monolayer semiconductor”, NATURE COMMUNICATIONS 11, 3589 (2020).

6. O. Del Pozo-Zamudio, A. Genco, S. Schwarz, F. Withers, P. M. Walker, T. Godde, R. C. Schofield, A. P. Rooney, E. Prestat, K. Watanabe, T. Taniguchi, C. Clark, S. J. Haigh, D. N. Krizhanovskii, K. S. Novoselov, A. I. Tartakovskii, “Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities”, 2D MATERIALS 7, 031006 (2020).

7. A. Tartakovskii, “Moire or not”, News and Views, NATURE MATERIALS 19, 581 (2020).

8. T. Severs Millard, A. Genco, E. M. Alexeev, S. Randerson, S. Ahn, A-R. Jang, H. S. Shin, A. I. Tartakovskii, “Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging”, NPJ 2D MATERIALS AND APPLICATIONS 4, 12 (2020).

9. O. Del Pozo-Zamudio, A. Genco, S. Schwarz, F. Withers, P. M. Walker, T. Godde, R. C. Schofield, A. P. Rooney, E. Prestat, K. Watanabe, T. Taniguchi, C. Clark, S. J. Haigh, D. N. Krizhanovskii, K. S. Novoselov, A. I. Tartakovskii, “Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities”, 2D MATERIALS 7 (2020).

10. D. Polak, R. Jayaprakash, T. P. Lyons, L. Á. Martínez-Martínez, A. Leventis, K. J. Fallon, H. Coulthard, D. G. Bossanyi, K. Georgiou, A. J. Petty, J. Anthony, H. Bronstein, J. Yuen-Zhou, A. I. Tartakovskii, J. Clark, A. J. Musser, “Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities”, CHEMICAL SCIENCE 11, 343-354 (2020).

11. V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin, V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M. Walker, M. S. Skolnick, D. N. Krizhanovskii, I. V. Iorsh, “Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum”, LIGHT: SCIENCE & APPLICATIONS 9, 56 (2020).

2019

12. F. A. Benimetskiy, V. A. Sharov, P. A. Alekseev, V. Kravtsov, K. B. Agapev, I. S. Sinev, I. S. Mukhin, A. Catanzaro, R. G. Polozkov, E. M. Alexeev, A. I. Tartakovskii, A. K. Samusev, M. S. Skolnick, D. N. Krizhanovskii, I. A. Shelykh, I. V. Iorsh, “Measurement of local optomechanical properties of a direct bandgap 2D semiconductor”, APL MATERIALS 7, 101126 (2019).

13. L. Sortino, P. G. Zotev, S. Mignuzzi, J. Cambiasso, D. Schmidt, A. Genco, M. Aßmann, M. Bayer, S. A. Maier, R. Sapienza, A. I. Tartakovskii, “Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas”, NATURE COMMUNICATIONS 10, 5119 (2019).

14. B. G. Freestone, J. A. Smith, G. Piana, R. C. Kilbride, A. J. Parnell, L. Sortino, D. M. Coles, O. B. Ball, N. Martsinovich, C. J. Thompson, T. I. Alanazi, O. S. Game, A. I. Tartakovskii, P. Lagoudakis, D. G. Lidzey, “Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites”, JOURNAL OF MATERIALS CHEMISTRY A 7, 11104 (2019).

15. T. P. Lyons, S. Dufferwiel, M. Brooks, F. Withers, T. Taniguchi, K. Watanabe, K. S. Novoselov, G. Burkard & A. I. Tartakovskii, “The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2”, NATURE COMMUNICATIONS 10, 2330 (2019).

16. E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, M. R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K. S. Novoselov, R. V. Gorbachev, H. S. Shin, V. I. Fal’ko & A. I. Tartakovskii, “Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures”, NATURE 567, 81 (2019).

2018

17. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, A. Catanzaro, F. Withers, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii & A. I. Tartakovskii, “Valley coherent exciton-polaritons in a monolayer semiconductor”, NATURE COMMUNICATIONS 9, 4797 (2018).

2017

18. M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. Casalis de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature“, NATURE COMMUNICATIONS 8, 1296 (2017).

19. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, A. I. Tartakovskii, “Valley addressable exciton-polaritons in atomically thin semiconductors”, NATURE PHOTONICS 11, 497 (2017).

20. P. Tonndorf, O. Del Pozo-Zamudio, N. Gruhler, J. Kern, R. Schmidt, A. I. Dmitriev, A. P. Bakhtinov, A. I. Tartakovskii, W. Pernice, S. Michaelis de Vasconcellos, R. Bratschitsch “On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source”, NANO LETTERS, 17, 5446 (2017).

21. E. M. Alexeev, A. Catanzaro, O. V. Skrypka, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, K. S. Novoselov, H. S. Shin , A. I. Tartakovskii “Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope”, NANO LETTERS, 17, 5342 (2017).

22. O. Del Pozo-Zamudio, J. Puebla, A. Krysa, R. Toro, A. M. Sanchez, R. Beanland, A. I. Tartakovskii, M. S. Skolnick, E. A. Chekhovich, “Metalorganic vapor phase epitaxy growth, transmission electron microscopy, and magneto-optical spectroscopy of individual InAsP/GaInP quantum dots”, PHYS. REV. MATERIALS 1, 034605 (2017).

23. L. Scarpelli, F. Masia, E. M. Alexeev, F. Withers, A. I. Tartakovskii, K. S. Novoselov, and W. Langbein, “Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers”, PHYSICAL REVIEW B 96, 045407 (2017).

24. P. Tonndorf, S. Schwarz, J. Kern, I. Niehues, O. Del Pozo Zamudio, A. Dmitriev, A. Bakhtinov, D. Borisenko, N. Kolesnikov, A. I. Tartakovskii, S. Michaelis de Vasconcellos, R. Bratschitsch, “Single-photon emitters in GaSe”, 2D MATERIALS 4, 2 (2017).

2016

25. T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization”, PHYSICAL REVIEW B 94, 165301 (2016).

26. S. Schwarz, A. Kozikov, F. Withers, J. K. Maguire, A. P. Foster, S. Dufferwiel, L. Hague, M. N. Makhonin, L. R. Wilson, A. K. Geim, K. S. Novoselov, A. I. Tartakovskii, “Electrically pumped single-defect light emitters in WSe2”, 2D MATERIALS, 3, 025038 (2016).

27. A. Waeber, M. Hopkinson, I. Farrer, D. A. Ritchie, J. Nilsson, R. M. Stevenson, A. J. Bennett, A. J. Shields, G. Burkard, A. I. Tartakovskii, M. S. Skolnick, E. A. Chekhovich, “Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy”, NATURE PHYSICS 12, 688 (2016).

28. A. Ulhaq, Q. Duan, E. Zallo, F. Ding, O. G. Schmidt, A. I. Tartakovskii, M. S. Skolnick, and E. A. Chekhovich, “Vanishing electron g factor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots”, PHYSICAL REVIEW B 93, 165306 (2016).

2015

29. F. Withers, O. Del Pozo-Zamudio, S. Schwarz, S. Dufferwie, P. M. Walker, T. Godde, A. P. Rooney, A. Gholinia, C. R. Woods, P. Blake, S. J. Haigh, K. Watanabe, T. Taniguchi, I. L. Aleiner, A. K. Geim, V. I. Fal’ko, A. I. Tartakovskii, K. S. Novoselov, “WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature”, NANO LETTERS, 15, 8223 (2015).

30. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D.D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities”, NATURE COMMUNICATIONS, 6, 8579 (2015).

31. O. Del Pozo-Zamudio, S. Schwarz, M. Sich, I. A. Akimov, M. Bayer, R. C. Schofield, E. A. Chekhovich, B. J. Robinson, N. D. Kay, O. V. Kolosov, A. I. Dmitriev, G. V. Lashkarev, D. N. Borisenko, N. N. Kolesnikov, A. I. Tartakovskii, “Photoluminescence of two-dimensional GaTe and GaSe films”, 2D Materials, 2, 035010 (2015).

32. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures”, NATURE MATERIALS, 14, 301 (2015).

33. E. A. Chekhovich, M. Hopkinson, M. S. Skolnick, A. I. Tartakovskii, “Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain”, NATURE COMMUNICATIONS, 6, 6348 (2015).

34. S. J. Haigh, A. P. Rooney, E. Prestat, F. Withers, O. Del Pozo Zamudio, A. Mishchenko, A. Gholinia, K. Watanabe, T. Taniguchi, A. I. Tartakovskii, A. K. Geim, K. S. Novoselov, “Cross sectional STEM imaging and analysis of multilayered two dimensional crystal heterostructure devices”, MICROSCOPY AND MICROANALYSIS 21, 107 (2015).

2014

35. B. Pingault, J. N. Becker, C. H. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, M. Atature, “All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond”, PHYSICAL REVIEW LETTERS, 113, 263601 (2014).

36. S. Schwarz, S. Dufferwiel, P. M. Walker, F. Withers, A. A. P. Trichet, M. Sich, F. Li, E. A. Chekhovich, D. N. Borisenko, N. N. Kolesnikov, K. S. Novoselov, M. S. Skolnick, J. M. Smith, D. N. Krizhanovskii, A. I. Tartakovskii, “Two-Dimensional Metal-Chalcogenide Films in Tunable Optical Microcavities”, NANO LETTERS, 14, 7003 (2014).

37. C. Bulutay, E. A. Chekhovich, A. I. Tartakovskii, “Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information”, PHYSICS REVIEW B, 90, 205425 (2014).

2013

38. D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. J. Robinson, E. A. Chekhovich, I. I. Tartakovskii, O. Kolosov, A. I. Tartakovskii, “Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates”, SCIENTIFIC REPORTS, 3, 3489 (2013).

39. E. A. Chekhovich, M. N. Makhonin, A. I. Tartakovskii, A. Yacoby, H. Bluhm, K. C. Nowack, L. M. K. Vandersypen “Nuclear spin effects in semiconductor quantum dots”, NATURE MATERIALS, 12, 494 (2013).

40. J. Puebla, E. A. Chekhovich, M. Hopkinson, P. Senellart, A. Lemaitre, M. S. Skolnick, and A. I. Tartakovskii, “Dynamic nuclear polarization in InGaAs/GaAs and GaAs/AlGaAs quantum dots under nonresonant ultralow-power optical excitation”, PHYSICAL REVIEW B 88, 045306 (2013).

41. I. J. Luxmoore, R. Toro, O. Del Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, A. I. Tartakovskii, “III–V quantum light source and cavity-QED on Silicon”, SCIENTIFIC REPORTS, 3, 1239 (2013).

42. E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson, P. Senellart, A. Lemaître, M. S. Skolnick, A. I. Tartakovskii, “Element-sensitive measurement of the hole–nuclear spin interaction in quantum dots”, NATURE PHYSICS, 9, 74 (2013).

2012

43. O. D. D. Couto, Jr., D. Sercombe, J. Puebla, L. Otubo, I. J. Luxmoore, M. Sich, T. J. Elliott, E. A. Chekhovich, L. R. Wilson, M. S. Skolnick, H.Y. Liu, A. I. Tartakovskii, “Effect of a GaAsP Shell on the Optical Properties of Self-Catalyzed GaAs Nanowires Grown on Silicon”, NANO LETTERS, 12, 5269 (2012).

44. E. A. Chekhovich, K. V. Kavokin, J. Puebla, A. B. Krysa, M. Hopkinson, A. D. Andreev, A. M. Sanchez, R. Beanland, M. S. Skolnick, A. I. Tartakovskii, “Structural analysis of strained quantum dots using nuclear magnetic resonance”, NATURE NANOTECHNOLOGY, 7, 646 (2012).

45. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning”, APPLIED PHYSICS LETTERS, 100, 121116 (2012).

46. O. Makarovsky, E. E. Vdovin, A. Patane, L. Eaves, M. N. Makhonin, A. I. Tartakovskii, M. Hopkinson, “Laser Location and Manipulation of a Single Quantum Tunneling Channel in an InAs Quantum Dot”, PHYSICAL REVIEW LETTERS, 108, 117402 (2012).

2011

47. M. N. Makhonin, K. V. Kavokin, P. Senellart, A. Lemaître, A. J. Ramsay, M. S. Skolnick, A. I. Tartakovskii, “Fast control of nuclear spin polarization in an optically pumped single quantum dot”, NATURE MATERIALS 10, 844 (2011).

48. O. D. D. Couto, Jr., J. Puebla, E. A. Chekhovich, I. J. Luxmoore, C. J. Elliott, N. Babazadeh, M. S. Skolnick, A. I. Tartakovskii, and A. B. Krysa, “Charge control in InP/(Ga,In)P single quantum dots embedded in Schottky diodes”, PHYSICAL REVIEW B 84, 125301 (2011).

49. A. Chekhovich, A. B. Krysa, M. S. Skolnick, A. I. Tartakovskii, “Light-polarization-independent nuclear spin alignment in a quantum dot”, PHYSICAL REVIEW B 83, 125318 (2011).

50. A. Chekhovich, A. B. Krysa, M. S. Skolnick, and A. I. Tartakovskii, “Direct Measurement of the Hole-Nuclear Spin Interaction in Single InP/GaInP Quantum Dots Using Photoluminescence Spectroscopy”, PHYSICAL REVIEW LETTERS 106, 027402 (2011).

51. Ł. Kłopotowski, V. Voliotis, A. Kudelski, A. I. Tartakovskii, P. Wojnar, K. Fronc, R. Grousson, O. Krebs, M. S. Skolnick, G. Karczewski, and T. Wojtowicz, “Stark spectroscopy and radiative lifetimes in single self-assembled CdTe quantum dots”, PHYSICAL REVIEW B 83, 155319 (2011).

2010

52. I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, A. I. Tartakovskii, A. B. Krysa, M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities”, APPLIED PHYSICS LETTERS 97, 181104 (2010).

53. M. N. Makhonin, E. A. Chekhovich, P. Senellart, A. Lemaître, M. S. Skolnick, A. I. Tartakovskii, “Optically tunable nuclear magnetic resonance in a single quantum dot”, PHYSICAL REVIEW B 82, 161309(R) (2010).

Recent publications

2020

2019

2018

2017

2016

gmaili.net gmail.com login problems with gmail account and sign in tips